Tag Archives: RBM

Mengenal Restricted Boltzmann Machine (RBM)

Oleh Abu Ahmad (abuahmad@promotionme.com)

Untuk melatih vektor biner yang akan kita asumsikan sebagai citra biner untuk penjelasan. Himpunan untuk latihan bisa dimodelkan menggunakan jaringan dua lapis yang disebut “Restricted Boltzmann Machine” (RBM) yang pixel biner stokastik yang terhubung ke detektor fitur biner stokastik menggunakan koneksi simetris berbobot. Pixel yang berpasangan dengan unit visible (terlihat) dari RBM karena statusnya bisa diobservasi; detektor fitur yang berpasangan dengan unit hidden (tersembunyi). Sebuah konfigurasi bersama (v,h) yang merupakan unit visible dan hidden mempunyai energi yang ditentukan oleh :

(1)   \begin{equation*}  E(v,h)=-\sum_{i\in visible} a_i v_i -\sum_{j\in hidden} b_j h_j -\sum_{i,j} v_i h_j w_{ij} \end{equation*}

di mana v_i,h_j adalah status biner dari unit visible i dan unit j , a_i, b_j adalah bias dari unit tersebut dan w_ij adalah bobot antara mereka. Jaringan memberikan sebuah probabilitas pada setiap pasang vektor unit visble dan hidden melalui fungsi energi berikut:

(2)   \begin{equation*}  p(v,h)=\frac{1}{Z}e^{-E(v,h)} \end{equation*}

dimana fungsi partisi, Z didapatkan dengan menjumlahkan semua pasangan yang mungkin dari vektor visible dan hidden”

(3)   \begin{equation*}  Z=\sum_{v,h}e^{-E(v,h)} \end{equation*}

Probabilitas dari jaringan memberikan sebuah vektor visible v didapatkan dengan menjumlahkan semua vektor tersembunyi yang mungkin

(4)   \begin{equation*}  p(v)=\frac{1}{Z}\sum_{h}e^{-E(v,h)} \end{equation*}

Probabilitas bahwa jaringan memberikan sebuah citra training bisa ditingkatkan dengan menyesuaikan bobot dan bias ke energi yang lebih rendah dari citra tersebut dan meningkatkan energi dari citra lain, terutama citra yang mempunyai energi rendah dan oleh karena itu akan memberi bobot yang besar pada fungsi partisi. Continue reading