Monthly Archives: June 2014

Teknik Pengkodean Sumber Tersebar untuk Kompresi Lossless pada Citra Hiperspektral

Penelitian ini membahas tentang aplikasi teori Distributed Source Coding(DSC) pada kompresi citra penginderaan jarak jauh. Walaupun DSC menunjukkan sebuah potensi penting dalam banyak bidang aplikasi, sampai saat ini, hasil yang diperoleh pada sinyal riil jatuh pada batasan teoretis, dan seringkali menunjukkan batasan tambahan pada tingkat sistem. Sasaran dari penelitian ini adalah untuk menilai potensi dari DSC untuk kompresi citra lossless yang dilakukan pada sebuah platform yang terpasang jarak jauh. Pertama, kita sediakan sebuah pandangan singkat dari DSC terhadap sumber-sumber informasi. Kemudian, kita fokus pada kompresi citra lossless terpasang, dan menerapkan teknik DSC untuk mengurangi kompleksitas encoder yang terpasang, pada pengeluaran dari decoder, dengan memanfaatkan korelasi dari pita yang berbeda dari sebuah dataset hiperspektral. Continue reading

Sebuah Incremental Principal Component Analysis Baru dan Aplikasinya untuk Pengenalan Wajah

Zhao, Haitao, Pong Chi Yuen, and James T. Kwok.

Abstrak. Principal Component Analysis (PCA) telah terbukti sebagai sebuah metode efisien dalam pengenalan pola dan analisis citra. Baru-baru ini, PCA telah secara luas dipakai untuk algoritma pengenalan wajah, seperti eigenface dan fisherface. Hasil menarik telah dilaporkan dan dibahas dalam literatur. Banayk sistem pengenalan wajah berbasis PCA juga telah dikembangkan dalam dekade terakhir. Namun, pengenalan wajah berbasis PCA yang ada sulit untuk diperbesar karena biaya komputasi dan beban kebutuhan memori. Untuk mengatasi keterbatasan ini, sebuah pendekatan inkremental biasanya diadopsi. Metode Incremental PCA(IPCA) telah dikaji selama beberapa tahun dalam komunitas pembelajaran mesin. Continue reading

Berapa Banyak Lubang Hitam di alam semesta?

Kita semua takut terhadap lubang hitam, namun seberapa banyak lubang hitam sebenarnya di luar sana? Antara lubang hitam bermassa bintang dan lubang hitam yang supermassif, seberapa banyak lubang hitam di luar angkasa?

Lubang Hitam

Lubang Hitam

Terdapat dua jenis lubang hitam di alam semesta yang kita ketahui: terdapat lubang hitam bermasa bintang, yang dibentuk dari banyak bintang-bintang, dan sebuah lubang hitam supermasif yang berada pada tangah galaksi. Continue reading

Estimasi Tegangan Listrik dengan koefisien kepercayaan

Tegangan listrik v dari sebuah sumber tegangan diukur 25 kali. Hasil dari pengukuran merupakan sampel x_i=v+v_i dari variabel acak X=v+V dan rataan mereka \bar{x}=112 V. Temukan interval kepercayaan 0.95 dari V.
a) Misalkan bahwa simpangan baku dari X karena error V adalah s=0.4V. dengan d=0.05, Tabel normal menyatakan bahwa z_{0.975}\approx 2. dimasukkan pada rumus, kita mendapatkan interval

    \[ \bar{x }\pm (z_{0.975} \sigma)/\sqrt{n}  = 112\pm  0.4/\sqrt{25}=112\pm 0.16 V \]

b) Misalkan s tidak diketahui. Untuk mengestimasinya, kita menghitung variansi sampel dan menemukan s^2=0.36. memasukkan kedalam rumus, kita mendapatkan estimasi pendekatan

    \[\bar{x } \pm(z_{0.975} s)/\sqrt{n}  = 112\pm 0.6/\sqrt{25}=112\pm 0.24 V\]

Karena t_{0.975} (25)=2.06, estimasi tepat mengarah 112\pm 0.247 V.

(Papoulis, 2002)

PCA untuk pengolahan data

Akhirnya, kita masuk pada Principal Componens Analysis(PCA). Apa itu PCA? PCA adalah sebuah cara untuk mengenali pola dalam data, dan menyatakan data dalam sebuah cara untuk menyoroti kemiripan dan perbedaan data. Karena pola-pola dalam data bisa sulit untuk ditemukan dalam data dimensi tinggi, dimana kemewahan dari representasi grafis tidak tersedia, PCA adalah sebuah perangkat yang kuat untuk menganalisis data.
Keuntungan lain dari PCA adalah ketika anda telah menemukan pola ini dalam data, dan anda memampatkan data, yaitu, dengan mengurangi jumlah dimensi, tanpa kehilangan banyak informasi. Teknik ini digunakan dalam kompresi citra, seperti yang akan kita lihat.
Pada bagian ini akan membawa anda melalui langkah yang anda butuhkan untuk melakukan sebuah Principal Component Analysis pada sekumpulan data. Saya tidak akan menjelaskan secara tepat mengapa teknik tersebut bekerja, namun saya akan mencoba untuk menyediakan sebuah penjelasan tentang apa yang terjadi pada tiap langkah sehinga akan bisa membuat keputusan yang diketahui ketika anda mencoba menggunakan teknik ini sendiri.

Hasil dari Gain Fundamental dari Pengkodean Sumber Universal yang Memory-Assisted

Beirami, Ahmad, Mohsen Sardari, and Faramarz Fekri

Banyak aplikasi membutuhkan pengolahan data untuk dilakukan pada bagian kecil data satuan yang mana mempunyai ukuran terbatas seperti berkas pada unit penyimpanan satuan dan paket dalam jaringan data. Namun, solusi kompresi universal tradisional tidak akan berjalan dengan baik melalui urutan dengan panjang terbatas. Baru-baru ini, kami mengusulkan sebuah kerangka kerja kompresi memory-assisted universal yang mempunyai sebuah hal penting yang menjanjikan untuk mengurangi data redundan dari urutan dengan panjang terbatas. Skema kompresi yang diusulkan didasarkan pada observasi bahwa dimungkinkan untuk mempelajari statistik sumber (dengan mengingat urutan sebelumnya dari sumber) pada beberapa entitas perantara dan kemudian meningkatkan konteks yang diingat untuk mengurangi redundansi dari kompresi universal terhadap urutan terbatas. Pertama kita sajikan gain fundamental dari pengkodean sumber memory –assisted universal yang diusulkan melalui kompresi universal konvensional (tanpa memori) untuk sebuah sumber parametris tunggal. Kemudian, kami mengembangkan dan menginvestigasi keuntungan dari pengkodean sumber memory-assisted universal ketika urutan data dibangkitkan dengan sebuah sumber majemuk yang mana merupakan campuran dari sumber-sumber parametris. Kami kemudian lebih jauh mengembangkan sebuah teknik klastering di dalam kerangka kerja kompresi memory-assisted untuk secara lebih baik menggunakan memori dengan mengklasifikasi urutan data yang diamati dari sebuah campuran dari sumber parametris. Akhirnya, kami mendemonstrasikan melalui simulasi komputer bahwa teknik klastering dan memorisasi gabungan bisa meningkatkan hingga 6 kali lipat peningkatan melalui teknik kompresi universal tradisional ketika sebuah campuran sumber Markov non biner dipertimbangkan.

Keuntungan Algoritma Training dengan Memaksimalkan Jumlah Pemisah

Pada makalah Boser 1992, kami menjelaskan sebuah algoritma training yang secara otomatis menyesuaikan kapasitas dari fungsi klasifikasi dengan memaksimalkan batas antara controh training dan batasan kelas, secara opsional setelah menghilangkan beberapa contoh yang tidak tipikal atau tidak bermakna dari data training. Fungsi klasifikasi yang dihasilkan hanya tergantung pada apa yang disebut pola penunjang. Pola penunjang adalah contoh training yang paling dekat dengan batasan keputusan dan biasanya merupakan himpunan bagian kecil dari data training.
Akan ditunjukkan bahwa dengan memaksimalkan jumlah batasan untuk meminimalkan kehilangan maksimum, sebagai lawan dari beberapa kuantitas rata-rata seperti kesalahan kuadrat rata-rata. Hal ini mempunya beberapa konsekuensi yang diinginkan. Aturan klasifikasi yang dihasilkan mencapai sebuah pemisahan data training yang tanpa error jika dimungkinkan. Pencilan atau pola yang tanpa makna dikenali oleh algoritma dan oleh karena itu bisa dihilangkan dengan mudah dengan atau tanpa supervisi. Hal ini berkebalikan dengan classifier yang berbasis pada minimasi error kuadrat rata-rata, yang mana secara tenang membiarkan pola yang tidak tipikal. Keuntungan lainnya dari pemisah batas maksimum adalah sensitivitas dari pemisah pada akurasi komputasi terbatas yang minimal dibandingkan dengan pemisahan lainnya dengan batas terkecil. Sebagai perbandingan dengan yang lain, sebuah batas pada unjuk kerja generalisasi diperoleh dengan metode leave-one-out. Untuk pemisah batas maksimum (maximum margin classifier), rasio bilangan yang secara pola penunjang yang linear independen terhadap jumlah contoh training. Batasan ini lebih ketat daripada sebuah batasan yang berdasarkan pada kapasitas keluarga pemisah.

Statistik Harapan Hidup Baterai

Harapan hidup baterai dari suatu merek tertentu dimodelkan dengan sebuah variabel acak normal dengan rata-rata η=4 tahun dan simpangan baku σ=6 bulan. Suatu mobil mempunyai baterai tersebut. Temukan prediksi interval harapan hidup baterai tersebut dengan koefisien konfiden γ=0.95.
Dalam contoh ini,
\delta=1-\gamma=0.05
u=1-\delta/2=0.975
z_{1-\delta/2}=2=-z_{\delta/2}
Hasil ini mengarah interval
\bar{x}\pm z_u \sigma=4\pm 2\times 0.5
Sehingga kita bisa mengharapkan dengan koefisien konfidensi 0.95 bahwa harapan hidup baterai kita akan berada di antara 3 dan 5 tahun.

Pengantar Ilmu Statistik

Probabilitas adalah sebuah disiplin ilmu matematika yang dikembangkan sebagai sebuah model abstrak dan konklusinya adalah deduksi yang berdasarkan atas aksioma-aksioma. Statistik menangani aplikasi dari permasalahan nyata dan konklusinya merupakan inferensi yang berdasar pada pengamatan. Statistik terdiri atas dua bagian: analisis dan desain.
Analisis, atau statistik matematis, adalah bagian dari probabilitas yang melibatkan utamanya ujicoba yang berulang dan kejadian dari probabilitas yang menndekati 0 atau 1. Hal ini mengarah pada inferensi yang bisa diterima sebagai mendekati kepastian. Desain, atau statistik terapan, menangani pengumpulan data dan konstruksi eksperimen yang secara cukup dijelaskan dengan model probabilistik.

(papoulis, 2002)